GEOPHYSICS, VOL. 71, NO. 3 (MAY-JUNE 2006); P. T87-T94, 6 FIGS.
10.1190/1.2197488

Vertical propagation of low-frequency waves in finely layered media

Alexey Stovas' and Bgrge Arntsen®

ABSTRACT

Multiple scattering in finely layered sediments is impor-
tant for interpreting stratigraphic data, matching well-log
data with seismic data, and seismic modeling. Two methods
have been used to treat this problem in seismic applications:
the O’Doherty-Anstey approximation and Backus averag-
ing. The O’Doherty-Anstey approximation describes the
stratigraphic-filtering effects, while Backus averaging de-
fines the elastic properties for an effective medium from the
stack of the layers. It is very important to know when the
layered medium can be considered as an effective medium.
In this paper, we only investigate vertical propagation.
Therefore, no anisotropy effect is taken into consideration.
Using the matrix-propagator method, we derive equations
for transmission and reflection responses from the stack of
horizontal layers. From the transmission response, we com-
pute the phase velocity and compare the zero-frequency
limit with the effective-medium velocity from Backus aver-
aging. We also investigate how the transition from time-
average medium to effective medium depends on contrast;
i.e., strength of the reflection-coefficient series. Using nu-
merical examples, we show that a transition zone exists be-
tween the effective medium (low-frequency limit) and the
time-average medium (high-frequency limit), and that the
width of this zone depends on the strength of the reflection-
coefficient series.

INTRODUCTION

In seismic interpretation, matching well-log data with seismic
data and seismic modeling requires the relating of wave-velocity
measurements at a scale of tens of meters to velocity measure-
ments at a scale of centimeters. Borehole logs show earth layering
on scales down to a few centimeters. Wave propagation through a

finely layered medium is dispersed and attenuated (O’Doherty and
Anstey, 1971; Burridge and Chang, 1989).

Shapiro et al. (1996) and Shapiro and Treitel (1997) provided
generalized O’Doherty-Anstey formulas for randomly multilay-
ered 1D media. This problem was first studied in the classical pa-
per by O’Doherty and Anstey (1971), but the original study was
limited to single and double scattering.

In the infinite-wavelength limit, finely layered media can be re-
garded as an effective homogeneous medium (Bruggerman, 1937;
Backus, 1962). Folstad and Schoenberg (1992) investigated mod-
els with different layer thicknesses and concluded that fine layering
of the order of one-tenth of the smallest wavelength effectively
could be regarded as a homogeneous medium. Shapiro and Treitel
(1997) showed that the classical O’Doherty-Anstey approximation
can be derived in a purely deterministic way from the reflection-
coefficient series. The theoretical estimate of the error in making
this approximation is given by Berlyand and Burridge (1995).
In Shapiro et al. (1996) and Shapiro and Hubral (1999), the
O’Doherty-Anstey approximation was extended to calculate both
amplitudes and phase factors in random media.

The wave-propagation velocity strongly depends on the ratio
of the dominant wavelength to the typical layer thickness A/d.
When the wavelength is large compared to the layer thickness, the
wave velocity is given by an average of the properties of individual
layers (Backus, 1962), and waves behave as if propagating in
an effective-anisotropic homogeneous medium (Helbig, 1984). In
contrast, when the wavelength is small compared to the layer
thickness, waves can be described as rays with wave velocities
larger than that of the effective medium, although a velocity in
an individual layer may exceed the effective velocity. For interme-
diate values A/d waves are generally dispersive and velocities
change rapidly with frequency (Rio et al., 1996).

Several attempts have been made to establish the minimum
value of A/d for which effective-medium theory is still valid. For
periodically layered media, Helbig (1984) concludes that the mini-
mum value of A/d is larger than 3 for SH-wave propagation, while
Melia and Carlson (1984) found from laboratory experiments on
periodically layered media that the minimum value of A/d lies be-
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tween 10 and 100, depending on material properties and layer
thicknesses. Marion et al. (1994) and Rio et al. (1995) performed
laboratory experiments and found that the minimum value of A/d
lies in the range between 8 and 15. Carcione et al. (1991) found
from numerical experiments that for periodically layered media,
the minimum value of A/d depends on the reflection coefficients of
the medium. Folstad and Schoenberg (1992) concluded from nu-
merical experiments that the minimum value of A/d was approxi-
mately 10 in a randomly layered medium. Hovem (1995) sug-
gested that for periodically layered media, the minimum value of
Ald strongly depends on the impedance of the layers. Thus, the re-
gion of validity of the effective-medium theory still is not defined
clearly.

We use the propagator-matrix method (Hovem, 1995) to derive
transmission and reflection responses for vertical-wave propaga-
tion through the stack of layers. The result is similar to that ob-
tained by Shapiro and Treitel (1997), but we do not use the Goupil-
laud model in our derivation. We also obtain an equation for phase
velocity in the weak-contrast and zero-frequency limit to compare
with the effective velocity from Backus averaging. We show that
the zero-frequency-limit phase velocity computed from the matrix-
propagator method is different from the vertical velocity computed
from Backus averaging. We show that an O’Doherty-Anstey type
approach also can be used to approximate phase velocity.

In this paper, we study vertical-wave propagation in a plane-
layered medium and show that the region of validity of effective-
medium theory depends on the values of reflection coefficients.
The minimum value of A/d, for which effective-medium theory is
still valid, tends to increase with increasing reflection coefficients.

In the following section, we derive simple approximate expres-
sions for transmission amplitude, phase velocity, and attenuation
for waves propagating in finely layered media. The expression for
transmission amplitude is similar to the well known O’Doherty and
Anstey (1971) expression, but we derived ours in a purely deter-
ministic way with no statistical assumption. In this respect, our re-
sult is similar to that derived in Shapiro and Treitel (1997) but
without the limitations of the Goupillaud model.

In the section on numerical results, we show that the phase ve-
locity given by the O’Doherty and Anstey formula approximates
surprisingly well the exact numerical calculation. In this section,
we also compute the minimum ratio of dominant wavelength to
typical layer thickness as a function of reflectivity contrast and
give the region of validity for effective-medium theory and time-
average theory.

THE TRANSMISSION RESPONSE FROM
A STACK OF LAYERS

To compute transmission and reflection responses from a stack
of plane layers, we use the propagator-matrix method (Haskell,
1953; Kennett, 1983). The propagator matrix Q for N layers (with
layer thickness d;, velocity v;, and density p; for the j™ layer) is the
product of N elementary matrices (Appendix A), as shown by
Hovem (1995) with

Ay B
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N
BN AN = HQ/’ (l)

j=1

where the asterisk denotes complex conjugate. The elements are
given by
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where (+ ... ). remains for higher-order multiple terms. The cumu-

lated phase functions are
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and r; is the reflection coefficient at the bottom of layer j, and 6
= wd,lv;.
The determinant of the total propagator matrix is given by

N N
1+
det Qy = |Ay]* = [By|* = IT det Q= I1 1, (5)
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Note that for a periodic medium, det Qy = 1; therefore, det Qy can
be used as the characteristic of periodicity.
The transmission response (Appendix A) is given by
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The transmission amplitude

_ Hszl (I-r) o

conslsts of two terms: I} 1(1 — ry), which is respon31ble for attenu-

attenuation due to scattering.
The transmission phase
S — tan-! Im & ®)
¢y = Uy — lan
1+Red®

also consists of two terms: the time-average term Jy and the scat-
tering term &. The function &, which is responsible for scatter-
ing, may be considered the correlation function for the reflection-
coefficient series r;,j = 1,N, and is given by
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The reflection response (Appendix A) is given by
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The phase velocity associated with transmission through the lay-
ers can be computed from equation 8 and is given by
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where V4 = wD/ 3y is the time-average velocity, and D is the total
thickness of the stack. The zero-frequency limit of equation 11 is
given by
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where 7; = 9;/w is one-way propagation times. From equation 12,
we can see that the phase velocity’s zero-frequency limit can be ei-
ther larger or smaller than the time-average velocity (high-frequen-
cy limit).

THE WEAK-CONTRAST APPROXIMATION
VERSUS THE O’DOHERTY-ANSTEY
APPROXIMATION

The scattering function @ contains an infinite number of even-
power correlation functions related to internal-multiple legs. The
reflection term in the denominator of equation 10 can be inter-
preted similarly but with an odd number of sums in each term. In
the weak-contrast approximation, we assume that the reflection co-
efficients are very small (|rj|<< 1); therefore, we can neglect
higher-order terms both in the scattering function and in the reflec-
tion term. In practice, this means that in all aforementioned equa-
tions, we skip the terms hidden under the +...

To a certain degree, the O’Doherty-Anstey (ODA) type approxi-
mation (1 + @ = e?) reconstructs the neglected terms because the
exponential function has an infinite number of terms in its Taylor

series. The transmission amplitude of equation 7 reduces to the
well-known O’Doherty-Anstey formula (Appendix B) with

N
9] = e 2000 T (1 - ), (13)
k=1

and the zero-frequency limit of equation 12 reduces to

Vo=V, ez/TNzk_IEJ k17K (14)

BACKUS EQUATION

Another approach for describing an effective medium was pro-
posed by Bruggeman (1937) and Backus (1962). We derive the ve-
locity from Backus averaging in terms of reflection coefficients.
From the original Backus definition, we obtain
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where ry is the reflection coefficient computed from interfaces be-
tween layers j and k. The reflection coefficient rj can be obtained
from the reflection-coefficient series r; by using the determinant of
the propagator matrix (equation 5) that is computed for the stack of
layers between layer j and layer k-1:

k=1
detQ; —1

det Q™ + 17

+r;

r. k= : . (16)
-

Note that because the term in the square brackets in equation 15 is

always positive, the velocity in the Backus limit is less than the

time-average velocity Vg < Viy.

The zero-frequency limit V,, from equation 12 generally is dif-
ferent from the Backus velocity Vg given in equation 15. This can
be explained by the different averaging techniques used. Let us in-
troduce the transmission response from equation 6 as 1% = e/¥w,
with Wy as the phase function (Shapiro and Hubral, 1999). Backus
averaging is applied to the total wave field (e/*~), while the zero-
frequency limit is computed from the phase only ¢**». The system
of differential equations for vertical propagation of only the verti-
cal component is given by

d -

—U, = ¢33 S

dz
d
—S. = - po’U,, (17)
dz

where U, and S, are Fourier-Hankel transformed vertical compo-
nents of displacement and stress. Backus averaging leads to aver-
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aging equation 17 coefficients (c31) and (p). Therefore, the Backus
velocity (equation 15) is defined for slowness squared, while the
zero-frequency limit (equation 12) is defined for slowness. Note
that in our comparison, we are limited by vertical propagation,
while Backus averaging is valid also for nonvertical propagation.

For a binary medium, series r; reduces to only one coefficient r,
and equation 15 reduces to the Floquet solution (Floquet, 1883) for
effective medium velocity (Hovem, 1995) that can be given in
terms of the reflection coefficient as

1 1

AL Add P
2 T2
Ve Via

T (18)
D2U|U2 (l - r2)
Despite the fact that zero-frequency limit and effective-velocity
limit are generally different, both reduce to the same expression for
a binary medium (Schoenberg, 1983).

Applying the weak-contrast approximation in equation 16 re-
sults in
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Substituting equation 19 into equation 15 and neglecting high-
order terms in reflection-coefficient products, we obtain
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Rewriting equation 12 in a similar way, we obtain
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SR
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By comparing equations 20 and 21, we conclude that the Back-
us-velocity limit and zero-frequency limit account for internal mul-
tiples in completely different ways. Backus averaging always guar-
anties the inequality Vg < V74. However, the zero-frequency limit
in the weak-contrast approximation (equation 21) does not guaran-
tee that.

NUMERICAL RESULTS

To investigate low-frequency wave propagation through a stack
of fine layers, we use models with different layer thicknesses and
variable contrast. To examine the influence of layer thickness, we
use real data from one well log (sampled at 0.125 m) as model M1,
and constructed from it the set of models M2, M4, and M8, by di-

viding the layer spacing by a factor of 2, 4, and 8, respectively
(Figure 1). The resulting models M2, M4, and M8 are then dupli-
cated 2, 4, and 8 times, preserving the total-depth interval of
500 m. Such repeated lithologic sequences can be found in turbid-
ite systems, for example.

To change the reflectivity contrast 7 in the stack, while keeping
the velocity profile unchanged, we introduce the following trans-
formation to the density profile p;, = Z;/V;, where acoustic imped-
ances are recursively transformed by the formulas Z; = Z; (1
+ yrio1 = yriy), i =2,3,... and Z, = p,V,. Therefore, the new
reflection-coefficient series is defined as #” = yr'". To compute
the reflection and transmission response, we use the matrix-
propagator method (equations 6 and 10).

In Figure 2, we compare for model M1 the Backus limit, zero-
frequency limit of equation 12, and zero-frequency limit from the
ODA approximation versus the strength of the reflection-
coefficient series. Note that even though all these limits are differ-
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Figure 1. Reflection-coefficient time series for models M1, M2,
M4, and M8.
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Figure 2. Time-average velocity Vg4, Backus velocity limit Vi,
zero-frequency limit Vy, and zero-frequency limit from the O’Do-
herty-Anstey approximation versus reflectivity contrast computed
for model M1.
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Figure 3. Phase velocity and transmission amplitude versus fre-
quency exactly computed for model M1, using the weak-contrast
and O’Doherty-Anstey approximations with reflectivity contrast
y=2.
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ent, the limit values are very similar for relatively small reflection
coefficients. When y — 0, all velocity limits converge to the time-
average limit. For large values of vy, we use the Backus limit be-
cause only this limit has physical meaning from effective-medium
theory point of view. Note that all velocity limits decrease with in-
creasing vy; hence, low-frequency waves propagate slowly in a me-
dium with high-contrast impedance.

Figure 3 compares the exact-values phase velocity and transmis-
sion amplitude with those obtained from weak-contrast approxima-
tion and from ODA. The weak-contrast approximation uses equa-
tion 7 for transmission amplitude and equation 11 for phase
velocity but neglects the higher-order terms in the correlation func-
tion @. For the ODA approximation, the function @ is defined by
equation B-2. Note that for both transmission amplitude and phase
velocity, the weak-contrast approximation is pure at some frequen-
cies, and the ODA approximation is much more accurate, espe-
cially at low frequencies.

In Figure 4, transmission and reflection responses are shown for
a Gaussian wavelet with 15-Hz peak frequency for models M1,
M2,...,32 and y = 1 and 4. This figure shows a transition zone be-
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Figure 4. Transmission (top) and reflection (bottom) responses for the set of models M1, M2,..., M32, computed for reflectivity contrast y

=1 (left) and y = 4 (right).



T92

Stovas and Arntsen

Transition medium | | Time-average medium

Transmission
amplitude

0.0

'/I'I'I
0/5 10 15

| Effective medium |Frequency (H2)

‘ Transition medium ‘

N +—1 _+M
2000 ——= - - :
K4
£ 1500
2
8 —M1
[} —M2
> - -
% 1000
£L
£ M16
500
0/5 10 15 20 25 30 35

J Effective medium |Frequency (Hz)

|Time-average medium | |

’ Transition medium || Time-average medium
10\
0.8
0.6
c
9O o
£33 04/
c £ |
Cm 1
'_
0.2
7
0.0 = T T T T T T T
0 5 10 15 20 25 30 35
I Effective medium |Frequency (Hz)
Transition medium H Time-average medium |
2000 TAvny
@
E 1500
2
o
9
©
>
2 1000 -
© i
< -
o
500 S

0 / 5 10 15 20 25 30 35

| Effective medium |Frequency (Hz)
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tween the effective medium and the time-average medium, where
the position of the zone depends on the strength of the reflection-
coefficient series defined by parameter . Effective-medium pa-
rameters also depend on vy (the reflections from the bottom of the
effective medium have different polarities for y = 1 and y = 4).

Figure 5 shows the phase velocity and transmission amplitude
for models M1, M2,..., M16 and contrasts y = 1 and 4. The transi-
tion zone on the transmission-amplitude curve is the first local
minimum following the pedestal. The phase-velocity curve reveals
the abrupt increase in velocity from the low-frequency limit to the
time-average limit. The position of the transition zone on each
curve is marked by triangles.

In Figure 6, the critical A/d ratio is plotted against the strength of
the reflection-coefficient series y. With increasing reflectivity, the
transition zone becomes larger. This means that the transition be-
tween the effective medium and time-average medium is defined
by the constant A/d ratio, and that it is also strongly reflectivity de-
pendent.
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CONCLUSIONS

Based on the matrix-propagator method, we derived equations
for transmission and reflection responses from a stack of horizontal
layers. We also derived expressions for the phase velocity and its
zero-frequency limit that are different from the effective velocity
derived by Backus averaging. The result of applying different av-
eraging techniques is that difference increases with increasing
strength of the reflection-coefficient series. Because only Backus
averaging has physical meaning, it should be used regardless of the
strength of the reflection-coefficient series.

By ignoring high-order terms in the scattering function, we ob-
tain weak-contrast approximations for transmission amplitude and
phase velocity. Using an O’Doherty-Anstey type approximation
improves the weak-contrast approximation for both transmission
amplitude and phase velocity.

A transition zone exists between the effective medium and the
time-average medium. Transition frequencies are dependent on
the strength of reflection coefficients, with larger reflection coeffi-
cients producing a wider transition zone.
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APPENDIX A
TRANSMISSION AND REFLECTION RESPONSES

The single-layer, 1D-propagator matrix is given by Hovem
(1995) as

1 €Y% rje"“)f
Q=7 i0, ,-i0; |* (A-1)

t g r je J e

where t; = 1 — r; is the transmission coefficient at the j* interface.
For an elastic medium, Q; = Q#. Therefore, the product of N ma-
trices Qy = II¥,Q); is a matrix with the same type of symmetry. The
elements of the total-propagator matrix can be written
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where the cumulative phase function is

=20, (A-4)

The down-going transmission and reflection responses can be
defined from Ursin (1983) as
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APPENDIX B
O’DOHERTY-ANSTEY APPROXIMATION

The O’Doherty-Anstey type approximation can be given sym-
bolically by

l+y=¢. (B-1)

This approximation contains an infinite number of terms, meaning
that we can add a polynomial type of term y2/2! + y3/3! + ...
They are not quite the same terms as those neglected in the weak-
contrast approximation (that are, in fact, convolutional-type terms
Yy + y'yy + ...). However, the O’Doherty-Anstey type approxi-
mation reconstructs the exact solution.

If we approximate function 1 + @ as

1+ &= eEkN;'Ein et leos 209,=9)+i sin 209,-99] (B )
then the transmission response (equation 6) reduces to

. N-1gN .
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with the phase function
N-1 N
Oy = ﬁN - kz % rkrj sin 2(19} - ﬁk) (B-4)
=1 j=k+1
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If we apply both weak-contrast and O’Doherty-Anstey approxi-
mations to the pure transmission term IT).,(1 — r,), we can sim-
plify equation B-3 to

. N-1<N .
th> = oIONZl) i sin 2(8;=0p)]

N N-1gN .
x6_2k=lrk+22k:| E_,'=k+1’k’j smz(ﬁj—q‘)k). (B-S)

Note for a binary medium, the first term in the amplitude exponent
disappears: %1t = 1.
The reflection response in ODA is given by

. N-1gxN . N-1gN
(N) _ T2ONZ00) Ty aj sin 200 9)] =22y iy rarj cos 2(9=)

p J=k+1
N
X Erje'Zi(ﬁN"ﬁj) . (B-6)
j=1

The phase velocity in ODA reduces to

| | LN
—_— > rerisin 2(9; — 9y),
V) Vi oD o0 !

(B-7)

with the zero-frequency limit defined by

1 1 2N—1 N
—:———2 2 rk}"j(Tj—Tk). (B_8)

Vo o Via Dicijmin

Applying the ODA for equation B-8, we derive the very conve-
nient equation

N-1gN
Vo = Vyye?Siei 2k (T T (B-9)
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